Definition in file C2Functions.py.
Go to the source code of this file.
Namespaces | |
namespace | analysis.C2Functions |
Classes | |
class | C2Exception |
Our own exception class. More... | |
class | RangeError |
Raised if an abscissa is out of range. More... | |
class | C2NakedFunction |
Raised if the base class C2Function is called without a valid value_with_derivatives(). More... | |
class | C2Function |
Provides support for the entire C2Function hierarchy. More... | |
class | C2ScaledFunction |
Create a function which is a simple scalar multiple of the parent. More... | |
class | C2Constant |
Create a function which is a constant. More... | |
class | _fC2sin |
Create a function which is the sine. Use the singleton C2Functions.C2sin to access this. More... | |
class | _fC2cos |
Create a function which is the cosine. Use the singleton C2Functions.C2cos to access this. More... | |
class | _fC2log |
Create a function which is the natural log. Use the singleton C2Functions.C2log to access this. More... | |
class | _fC2exp |
Create a function which is the e^x. Use the singleton C2Functions.C2exp to access this. More... | |
class | _fC2sqrt |
Create a function which is the square root. Use the singleton C2Functions.C2sqrt to access this. More... | |
class | C2ScaledRecip |
Create a function which is the scale /x. Use the singleton C2Functions.C2recip to access this as 1/x. More... | |
class | _fC2identity |
Create a function which is x. Use the singleton C2Functions.C2identity to access this. More... | |
class | C2Linear |
Create a function which is (x - x0)*slope + y0. More... | |
class | C2Quadratic |
Create a function which is a *(x - x0)**2 + b *(x - x0) + c. More... | |
class | C2PowerLaw |
Create a function which is ax**b. More... | |
class | C2Polynomial |
Create a function which is c0 + c1 (x-x0) + c2 (x-x0)^2 + ... More... | |
class | C2ComposedFunction |
create a composed function outer(inner(...)). The functions can either be unbound class names or class instances More... | |
class | C2BinaryFunction |
abstract class to create a binary function f (operator) g More... | |
class | C2Sum |
class to create function f + g More... | |
class | C2Diff |
class to create function f - g More... | |
class | C2Product |
class to create function f * g More... | |
class | C2Ratio |
class to create function f / g More... | |
class | C2Power |
class to create function f ** g with optimization if g is a constant More... | |
class | InterpolatingFunction |
the parent class for various interpolators. Does untransformed cubic splines by default. More... | |
class | LogLinInterpolatingFunction |
An InterpolatingFunction which stores log(x) vs. y. More... | |
class | LinLogInterpolatingFunction |
An InterpolatingFunction which stores x vs. log(y). More... | |
class | LogLogInterpolatingFunction |
An InterpolatingFunction which stores log(x) vs. log(y). More... | |
class | AccumulatedHistogram |
class | LogLogAccumulatedHistogram |
class | InverseIntegratedDensity |
class | LinLogInverseIntegratedDensity |
class | C2InverseFunction |
class | C2ConnectorFunction |
class | C2LHopitalRatio |
Functions | |
def | native |
def | _spline |
solve for the spline coefficients y'' | |
def | _spline_extension |
compute the correct coefficients and insert them to allow spline extrapolation | |
def | _splint |
compute the interpolated value for a set of spline coefficients and either a scalar x or an array of x values | |
def | _identity |
def | _one |
def | _zero |
def | _recip |
def | _mrecip2 |
def | _myexp |
def | _mylog |
def | LinearInterpolatingGrid |
legacy... | |
def | LogLogInterpolatingGrid |
legacy... | |
def | as |
def | bessj |
def | bessj_adaptive |
Variables | |
string | _rcsid = "$Id: C2Functions.py,v 1.66 2007/11/21 16:18:00 mendenhall Exp $" |
_numeric_float = _numeric.float64 | |
tuple | C2sin = _fC2sin() |
a pre-constructed singleton | |
tuple | C2cos = _fC2cos() |
a pre-constructed singleton | |
tuple | C2log = _fC2log() |
a pre-constructed singleton | |
tuple | C2exp = _fC2exp() |
a pre-constructed singleton | |
tuple | C2sqrt = _fC2sqrt() |
a pre-constructed singleton | |
tuple | C2recip = C2ScaledRecip() |
a pre-constructed singleton for 1/x | |
tuple | C2identity = _fC2identity() |
a pre-constructed singleton identity | |
_has_linalg = True | |
LogConversions = _mylog,_recip,_mrecip2,_myexp | |
tuple | ag = ag1LinearInterpolatingGrid(1, 1.0,4) |
tuple | ag13 = (ag1*ag1) |
tuple | fn = C2sin(C2sqrt(ag1*ag1*ag1)) |
tuple | x1 = fn.find_root(0.0, 1.35128, 0.1, 0.995, trace=True) |
float | x = 0.1 |
tuple | sna = C2sin(C2PowerLaw(1,2)) |
tuple | xg = _numeric.array(range(sample), _numeric_float) |
tuple | partials = sna.partial_integrals(xg) |
tuple | sumsum = sum(partials) |
tuple | yg = sna(xg) |
tuple | simp = sum(sna.partial_integrals(xg, derivs=1)) |
float | exact = 0.804776489343756110 |
int | pc = 3 |
tuple | b = math.exp(lv) |
tuple | np = int(pc*b) |
tuple | g = _numeric.array(range(np), _numeric_float) |
tuple | v0 = C2recip.partial_integrals(g, allow_recursion=False) |
n0 = C2recip.total_func_evals | |
tuple | v1 |
n1 = C2recip.total_func_evals | |
tuple | v2 |
n2 = C2recip.total_func_evals | |
tuple | v3 |
n3 = C2recip.total_func_evals | |
tuple | yy = _numeric.exp(-xg[:-1]*xg[:-1]) |
tuple | ah = AccumulatedHistogram(xg[::-1], yy[::-1], normalize=True) |
tuple | ahi = AccumulatedHistogram(xg, yy, normalize=True, inverse_function=True) |
tuple | xv = _numeric.array([1.5**(0.1*i) for i in range(100)]) |
tuple | yv = _numeric.array([x**(-4)+0.25*x**(-3) for x in xv]) |
tuple | f |
tuple | f0 = C2PowerLaw(1., -4) |
tuple | pp = f0.partial_integrals(_numeric.array(range(11), _numeric_float)*0.1 + 20) |
list | energies = [float(2**(0.5*n)) for n in range(41)] |
list | spect = [10000.0/(e*e) for e in energies] |
list | e0 = energies[-1] |
list | e1 = energies[0] |
tuple | pf = LinLogInverseIntegratedDensity(energies[::-1], spect[::-1]) |
tuple | r = (0.025*i) |
tuple | mma = (e0*e1) |
tuple | grid = (0., 3., 6., 9., 12.) |
tuple | v = fn.GetSamplingGrid(xmin,xmax) |
tuple | sn = fn.NormalizedFunction(0., math.pi) |
tuple | gn = fn.SquareNormalizedFunction(0., 4.0*math.pi) |
fn2 = fn*fn | |
gn2 = gn*gn | |
tuple | myexp = _fC2exp() |
tuple | a = C2InverseFunction(myexp) |