A lot like lm_lambda_recipe but for svd fits. It adjusts the damping depending on the behavior of chi^2
Definition at line 671 of file fitting_toolkit.py. 00671 : 00672 "adjust the damping parameter based on the old and new chi^2 values" 00673 if old_chi2 is None: 00674 self.svd_damping=1.0 00675 elif old_chi2 < new_chi2: 00676 if new_chi2/old_chi2 < 1.1: 00677 self.svd_damping *=0.8 #on a slightly bad fit (bobbling), don't penalize too badly 00678 else: 00679 self.svd_damping *= 0.25 00680 else: 00681 self.svd_damping = min(self.svd_damping *2.0, 1.0) 00682 ##
|