def derivs (   self  ) 

Compute derivatives by default numerical differentiation for all non-frozen parameters, This must be overridden for fits which have analytic derivatives. See example in class documentation. Note in particular that the array returned is organized with all the values for a point in each row. The columns correspond to the parameters.

Reimplemented from fit.

Definition at line 15 of file gauss_deriv_fit.py.

00015                     : 
00016         #analytic derivatives for a 1-d gaussian*(x-mu)
00017         #z0+a*(x-mu)*exp( -(x-xmu)**2/(2*xsig**2) )
00018         z0, a, xmu, xsigma = self.funcparams
00019         n=self.pointcount
00020         x=self.xarray[0,:n]
00021         xsigi=-1.0/(2.0*xsigma**2)
00022         dx=x-xmu
00023         dx2=dx*dx
00024         expfact=Numeric.exp(xsigi*dx2)
00025         z=a*expfact*dx
00026         
00027         dd = Numeric.zeros((n, 4), self.atype)
00028         dd[:,0]=1.0
00029         dd[:,1]=expfact*dx
00030         dd[:,2]=(-2.0*xsigi*dx*dx - 1)*a*expfact
00031         dd[:,3]=(-2.0*xsigi/xsigma)*(dx2*z)
00032         
00033         return dd   
00034 


Generated on Wed Nov 21 10:18:32 2007 for analysis by  doxygen 1.5.4