Definition at line 136 of file spline.py. 00136 : 00137 "find point at x3 given 4 points in given lists using exact cubic interpolation, not splining" 00138 x1,x2,x4,x5=xlist 00139 x2,x3,x4,x5=float(x2-x1),float(x3-x1),float(x4-x1),float(x5-x1) 00140 y1,y2,y4,y5=ylist 00141 y2,y4, y5=float(y2-y1),float(y4-y1),float(y5-y1) 00142 00143 y3=( 00144 (x3*(x2**2*x5**2*(-x2 + x5)*y4 + x4**3*(x5**2*y2 - x2**2*y5) + x4**2*(-(x5**3*y2) + x2**3*y5) + 00145 x3**2*(x2*x5*(-x2 + x5)*y4 + x4**2*(x5*y2 - x2*y5) + x4*(-(x5**2*y2) + x2**2*y5)) + 00146 x3*(x2*x5*(x2**2 - x5**2)*y4 + x4**3*(-(x5*y2) + x2*y5) + x4*(x5**3*y2 - x2**3*y5))))/ 00147 (x2*(x2 - x4)*x4*(x2 - x5)*(x4 - x5)*x5) 00148 )+y1 00149 return y3 00150 from analysis import fitting_toolkit
|